As mentioned in one of my earlier posts, mechanical engineers are rarely taught ( in Indian engineering colleges ) during their graduate or undergraduate programs on certain skills they need the most. My quick list is as follows:
- Hand calculation - Eg: To calculate the power required to drive a machine
- Reading engineering drawings and understand the various notations (like GD&T)
- Knowledge of materials and their selection
- Knowledge of manufacturing processes and their limitations (practical aspects)
- Selecting various elements like motor, gearbox, servo, sensors, actuators etc.
- Understanding how parts are assembled and their implications
- How to make engineering judgement from measurements and results.
Even though mechanical engineers are taught on doing calculations like finding the force, torque etc. it is not taught in a practical application point of view where in they get to apply their knowledge of calculating forces on a given engineering problem. If a fresh mechanical engineer is asked to find the motor power required to drive a conveyor carrying a load of 100 kg at 15 m/min, I have serious doubts how many could actually attempt doing this. However if you ask them to find the power for a given torque and speed they will do this in minutes. The problem actually lies in the habit of finding results based on "given" data. Engineers are not trained in assuming, building hypothesis, approximation etc. In fact this is the skill that differentiates an engineer from a technician.
I am reminded of a good old story where an expert was called to fix a leaking boiler. He inspected the boiler, found the cause and location of leak and asked his technician to do the repair to arrest the leak. Finally he charged $100. The company official who was supposed make the payment asked : "You mean $100 for just arresting a leak?" The expert replied: " Arresting the leak costs only $ 2, while finding the cause of leak costs $ 98 ! "
The grim reality of our engineering education is that none of our engineers (includes me when I too passed out as a fresh engineer) get a mental picture of what they are supposed to do in an industrial setting. Very few actually have to derive differential equations and do matrix multiplication as part of their day to day job, unless they are into core design and engineering research. However they should be able to manage resources, find the right vendors, select and order engineering goods like motor, gearbox etc., do some quick calculations, choose a suitable manufacturing process and so on. All these skills are for mechanical engineers who manage production and projects.
The very engineering faculty who are supposed to teach this do not get a chance or rather do not get trained in doing such calculations during their career. The same reason applies to all the important skills I have listed.
The last point, engineering judgement is probably the most important skill, not only for mechanical engineers, but for any engineer. For a mechanical engineer this skill is required for him to be able to anticipate whether a given system can or might fail and under what circumstances. This skill differentiates a skilled engineer from a knowledgeable engineer.
To summarize, I would say that fresh engineers are knowledgeable, but not skilled enough. They know how to do calculations for some given quantities. They learn some facts, pass exams, earn a degree. For example, they know what drilling is. But may not know how to choose a pilot drill. They also might not know that drilling process usually produces a larger hole than the one it is intended for. Eg. A 10 mm drill produces a 10.1 mm or 10.2 mm hole. They might have learned about induction motor, how to start a motor in lab, etc. but might not know how to choose a motor for a given application. These highlight one important drawback in our education system, we create knowledgeable engineers who are not skilled enough! Of course these skills can only be attained through experience. About a decade ago we had the luxury to wait to get an engineer trained on the job till he/she acquires the skill. In these days when the world goes so fast and is well connected industry needs everything faster and earlier which means engineers need to be imparted some of these skills during their undergraduate program itself.
Any possible solution?
Train the engineering faculty to further train the students so that they become reasonably skilled enough for a job. Teachers to be trained not on theory but on practical engineering skills. I shall put in my thoughts on how this training can be implemented in practice.